Trading book and credit risk: how fundamental is the Basel review?

Jean-Paul LAURENT
Université Paris 1, PRISM & Labex RéFi

Michael SESTIER
Université Paris 1, PRISM, Labex RéFi & PHAST Solutions Ltd.

Stéphane THOMAS
Université Paris 1, CES, Labex RéFi & PHAST Solutions Ltd.

Quant 12 Workshop - EM Lyon - November 26-27, 2015
Contents

1. Basel recommendations on credit risk
2. Default Risk Charge (DRC) in Basel III FRTB
3. Empirical implications
Credit risk in Basel 2.5 (IRC) and RWA variability

- Basel framework: the Risk Weighted Assets (RWA)

$$\text{Minimum Capital Requirement} = X\% \times \text{RWA}$$ (1)

- RWA for credit risk in the trading book: Incremental Risk Charge (IRC)

 BCBS - Basel 2.5 (2009) [1]

 $$\Rightarrow \text{No prescribed model} \ (\text{internal, often multi-factorial model for the default correlation}).$$

- RWA variability
 - High variability of RWA among financial institutions and jurisdictions.
 - Internal models in cause, especially for the IRC calculation.

 BCBS - RCAP Trading Book (2013) [2, 3]
RWA variability: Hypothetical Portfolio Exercises

Source: Second report on RWA in the trading book.
BCBS - Regulatory Consistency Assessment Program (2013) [2]
Basel III FRTB: the Default Risk Charge (DRC)

- Improving the RWA comparability among financial institutions

⇒ Constraints on the modelling choices for internal models

- **Basel III FRTB, RWA for credit risk:** Default Risk Charge (DRC)

⇒ Based on a prescribed two-factor model for the default correlation
Portfolio loss

- **One period portfolio loss**

\[L = \sum_k EAD_k \times LGD_k \times \text{DefaultIndicator}_k \]

- Exposures (EAD) and Losses Given Default (LGD) assumed constant for simplicity.

⇒ Focus on correlation modelling.

- **Trading book inventories**

 - Exposures may be long (sign +) or short (sign -).
 - CDS or bond exposures.

- **Latent variable model**

 - Default occurs if a latent variable, \(X_k \), lies below a threshold:

\[\text{DefaultIndicator}_k = 1_{\{X_k \leq \text{threshold}_k\}} \]

(3)
Prescribed two-factor model

"The Committee has decided to develop a more prescriptive DRC charge in the models-based framework. Banks using the internal model approach to calculate a default risk charge must use a two-factor default simulation model, which the Committee believes will reduce variation in market risk-weighted assets but be sufficiently risk sensitive as compared to multifactor models."

BCBS (2013) [5]

Factor models

\[X_k = \beta_k Z + \sqrt{1 - \beta_k' \beta_k} \epsilon_k \] (4)

- \(Z \sim N(0, I_d) \): systematic factor.
- \(\epsilon_k \sim N(0, 1) \) : specific risk.
- \(\beta \in \mathbb{R}^{K,J} \): factor loadings.
- threshold \(k = \Phi^{-1}(p_k) \) with \(p_k \) the default probability of the obligor \(k \) and \(\Phi \) the Gaussian cdf.

Latent or observable factors (sectors, regions, . . .)
Prescribed calibration data

"Default correlations must be based on credit spreads or on listed equity prices".
BCBS (2015) [10]

- Consider \(X \in \mathbb{R}^{K \times T} \) the historical sample of centered returns:

 \[
 \begin{align*}
 \text{Sample covariance matrix :} & \quad \Sigma_{Sample} = T^{-1}XX^t \\
 \text{Shrinked covariance matrix :} & \quad \Sigma_{Shrinkage} = \alpha \Sigma_{FactorModel} + (1 - \alpha) \Sigma_{Sample} \\
 \text{Initial correlation matrix :} & \quad C_0 = (\text{diag}(\Sigma))^{-1/2} \Sigma (\text{diag}(\Sigma))^{-1/2}
 \end{align*}
 \]

- Nearest correlation matrix with a two-factor structure

 \[
 \begin{align*}
 \arg \min_{\beta} f_{obj}(\beta) &= \| C(\beta) - C_0 \|_F \\
 \text{subject to } \beta &\in \Omega = \{ \beta \in \mathbb{R}^{K \times 2} | \beta_k^t \beta_k \leq 1, k = 1, \ldots, K \}
 \end{align*}
 \]

 \(\Rightarrow \) Constraint ensures that \(C(\beta) = \beta \beta^t + \text{diag}(Id - \beta \beta^t) \) is positive semi-definite.

- PCA-based method and Spectral projected gradient method

Specific-systematic decomposition of the loss

\[L(Z, \varepsilon) = \sum_k EAD_k \times LGD_k \times 1 \{ \beta_k Z + \sqrt{1 - \beta_k^2} \varepsilon_k \leq \Phi^{-1}(p_k) \} \]

- **Hoeffding decomposition of the default losses**

 VAN DER VAART (2000) [14], ROSEN & SAUNDERS (2010) [9], HOEFFDING (1948) [15].

\[L(Z, \varepsilon) = E[L] \]

\[+ E[L|Z] - E[L] \]

\[+ E[L|\varepsilon] - E[L] \]

\[+ L(Z, \varepsilon) - E[L|Z] - E[L|\varepsilon] + E[L] \]

\[\phi_0(L) : \text{Expected Loss} \]

\[\phi_1(L; Z) : \text{Systematic Loss} \]

\[\phi_2(L; \varepsilon) : \text{Specific Loss} \]

\[\phi_{1,2}(L; Z, \varepsilon) : \text{Interaction Loss} \]

- \(\phi_1(L; Z) \) corresponds (up to the expected loss term) to the heterogeneous Large Pool Approximation.
Portfolio risk and contributions

Portfolio risk
- Value-at-Risk: \(\text{VaR}_\alpha[L] = \inf \{ l \in \mathbb{R} | \mathbb{P}(L \leq l) \geq \alpha \} \)
- Full allocation property: \(\text{VaR}_\alpha[L = L_1 + L_2] = \mathbb{E}[L_1|L = \text{VaR}_\alpha[L]] + \mathbb{E}[L_2|L = \text{VaR}_\alpha[L]] \)

Systematic-specific contribution of the portfolio risk

\[
\text{VaR}_\alpha[L] = \mathbb{E}[\phi_0|L = \text{VaR}_\alpha[L]] + \mathbb{E}[\phi_1(L; Z)|L = \text{VaR}_\alpha[L]] + \mathbb{E}[\phi_2(L; \varepsilon)|L = \text{VaR}_\alpha[L]] + \mathbb{E}[\phi_{1,2}(L; Z, \varepsilon)|L = \text{VaR}_\alpha[L]]
\]

\(C_{\phi_0} : \text{Expected Loss Contribution} \)
\(C_1(L; Z) : \text{Systematic Contribution} \)
\(C_2(L; \varepsilon) : \text{Specific Contribution} \)
\(C_{1,2}(L; Z, \varepsilon) : \text{Interaction Contribution} \)
Portfolios - Itraxx Europe - Corporates

<table>
<thead>
<tr>
<th></th>
<th>Long only portfolio</th>
<th>Long/short portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Long 125 names</td>
<td>Long 27 financial names</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short 27 non-financial names</td>
</tr>
<tr>
<td>Exposures</td>
<td>Equaly weighted</td>
<td>Equaly weighted</td>
</tr>
<tr>
<td></td>
<td>Total exposure = 1</td>
<td>Total exposure = 0</td>
</tr>
</tbody>
</table>
1-year Default Probabilities

- **1-year Default Probabilities**: Bloomberg Issuer Default Risk Methodology

![Graph showing 1-year Default Probabilities for Financials and Non-Financials](image)
Unconstrained correlation matrix and J-factor model

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Data for estimating C_0</th>
<th>Period</th>
<th>Estimation method for C_0</th>
<th>Calibration method for the J-factor models</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Equity - P1</td>
<td>Equity returns</td>
<td>1</td>
<td>Sample correlation</td>
<td>PCA and SPG algorithms</td>
</tr>
<tr>
<td>(2) Equity - P1 Shrinked</td>
<td>Equity returns</td>
<td>1</td>
<td>Shrinkage ($\alpha_{shrink} = 0.32$)</td>
<td>PCA and SPG algorithms</td>
</tr>
<tr>
<td>(3) Equity - P1 Exogenous Factors</td>
<td>Equity returns</td>
<td>1</td>
<td>Sample correlation</td>
<td>Linear Regression</td>
</tr>
<tr>
<td>(4) Equity - P2</td>
<td>Equity returns</td>
<td>2</td>
<td>Sample correlation</td>
<td>PCA and SPG algorithms</td>
</tr>
<tr>
<td>(5) Equity - P2 Shrinked</td>
<td>Equity returns</td>
<td>2</td>
<td>Shrinkage ($\alpha_{shrink} = 0.43$)</td>
<td>PCA and SPG algorithms</td>
</tr>
<tr>
<td>(6) Equity - P2 Exogenous Factors</td>
<td>Equity returns</td>
<td>2</td>
<td>Sample correlation</td>
<td>Linear Regression</td>
</tr>
<tr>
<td>(7) IRBA</td>
<td>-</td>
<td>-</td>
<td>IRBA formula</td>
<td>PCA and SPG algorithms</td>
</tr>
<tr>
<td>(8) KMV - P2</td>
<td>-</td>
<td>2</td>
<td>GCorr methodology</td>
<td>PCA and SPG algorithms</td>
</tr>
<tr>
<td>(9) CDS - P2</td>
<td>CDS spreads</td>
<td>2</td>
<td>Sample correlation</td>
<td>PCA and SPG algorithms</td>
</tr>
</tbody>
</table>

Period 1: from 07/01/2008 to 07/01/2009. Period 2: from 09/01/2013 to 09/01/2014.
Correlation matrices - Distributions

(1) Equity - P1
(2) Equity - P1 - Shrinked
(3) Equity - P1 - Exogenous Factors
(4) Equity - P2
(5) Equity - P2 - Shrinked
(6) Equity - P2 - Exogenous Factors
(7) IRBA
(8) KMV - P2
(9) CDS - P2

Legend:
- Unconstrained model
- 1-factor model
- 2-factor model
- J*-factor model
Impacts on the risk - Long portfolio

Configurations: (1) Equity - P1; (2) Equity - P1 - Shrinked; (3) Equity - P1 - Exogenous Factors; (4) Equity - P2; (5) Equity - P2 - Shrinked; (6) Equity - P2 - Exogenous Factors; (7) IRBA; (8) KMV - P2; (9) CDS - P2. J^*-factor model is only active for “(1) Equity – P1” and “(4) Equity – P2” configurations.
Impacts on the risk - Long-short portfolio

Conﬁgurations: (1) Equity - P1; (2) Equity - P1 - Shrinked; (3) Equity - P1 - Exogenous Factors; (4) Equity - P2; (5) Equity - P2 - Shrinked; (6) Equity - P2 - Exogenous Factors; (7) IRBA; (8) KMV - P2; (9) CDS - P2. \(J^* \)-factor model is only active for “(1) Equity – P1” and “(4) Equity – P2” conﬁgurations.
Systematic contribution to the risk - Long portfolio

Configurations: (1) Equity - P1; (2) Equity - P1 - Shrinked; (3) Equity - P1 - Exogenous Factors; (4) Equity - P2; (5) Equity - P2 - Shrinked; (6) Equity - P2 - Exogenous Factors; (7) IRBA; (8) KMV - P2; (9) CDS - P2. J^*-factor model is only active for “(1) Equity – P1” and “(4) Equity – P2” configurations.
Systematic contribution to the risk - Long-short portfolio

Configurations: 1) Equity - P1; 2) Equity - P1 - Shrinked; 3) Equity - P1 - Exogenous Factors; 4) Equity - P2; 5) Equity - P2 - Shrinked; 6) Equity - P2 - Exogenous Factors; 7) IRBA; 8) KMV - P2; 9) CDS - P2. J*-factor model is only active for “1) Equity – P1” and “4) Equity – P2” configurations.
Conclusions - RWA variability and comparability

- The RWA variability stemming from correlation modelling remains high.
 - It is a challenge regarding model comparability.
 - Two factor constraint is more active in stressed periods (2008)
 - The prescriptions might prove quite useful when dealing with a large number of assets: unconstrained correlation matrix (with small eigenvalues) would ease the building of opportunistic portfolios.

- Other main sources of variability
 - The high confidence level of the regulatory risk measure;
 - Disparities among correlation matrices (type of data and/or the calibration period).

⇒ Small changes in exposures or other parameters may lead to significant changes in the credit VaR, jeopardizing the comparability of RWA.

- The use of Large Pool Approximation is questionable: poor contribution to the VaR
Bibliography I

Bibliography II

